Many industries globally are dependent on our understanding of aerodynamics, such as travel, freight, motorsports, and power generation. Accurate design and analysis of airfoils and wings allow us to increase the performance of aircraft, wind turbines, F1 cars etc. increasing the output (speed, power generation) and minimising costs.

What Students will do

During this project students will design, manufacture, and experimentally test an airfoil or wing section. Students will learn how to use the XFoil open-source software to design and theoretically test a wing or airfoil section. They will then test a 3D printed model of their wing section using our wind tunnels to compare the real and theoretical flight performance characteristics. 

Please note -  Student's will need to have their hypothesis agreed on with their mentor by Sunday,15 December 2019. Student need to submit their wing design (detail of this will be on Openlearning) by Friday, 13 January 2020. 

Science

  • Physics 

Prerequisite Study

  • Physics 
  • Calculus-based mathematics 

Areas of Student Interest 

  • Pilots
  • Aerospace engineers 

 

Lead Academic: Professor Con Doolan - Professor, School of Mechanical and Manufacturing Engineering

Con Doolan

Professor Con Doolan is based in the School of Mechanical and Manufacturing Engineering.  He has research interests and expertise in the following areas: 

  • Aeroacoustics and flow induced noise: understanding and controlling noise generated by fluid flow (aircraft, wind turbines, submarines, fans, ventilation ducts, automobiles, trains, valves, etc) 
  • Fluid mechanics: understanding the physics of fluid flow and applying this knowledge to practical problems in industry 
  • Acoustics and noise control: general acoustics, acoustic beamforming, time reversal 
  • Wind tunnel testing: aerodynamic

PhD Student: Angus Wills

Angus Wills

Angus is currently a PhD student in the School of Mechanical and Manufacturing Engineering at the University of New South Wales (UNSW), with a focus on Aerospace Engineering. He has two bachelor’s degrees in Aerospace Engineering, and Physics, from UNSW. His research focuses on turbulence and fluid structure interaction in supersonic flow, specifically in interaction between shockwaves and compliant wall panels. This research aims to assist with the development of hypersonic aircraft and scramjet engines.  

Tags