Research in the School of Chemistry is focused into three strategic areas:

- Nanoscience,
- Catalysis and Energy, and
- Medicinal Chemistry.

Specific programs include:

1. Nanomedicine, self-assembled materials; designer surfaces; nanostructured materials: biosensors, and molecular electronics.

2. Homogeneous catalysts for efficient and selective synthesis; energy generation and storage materials; nitrogen fixation and carbon dioxide sequestration;

3. Synthesis of biologically active naturally occurring molecules; development of molecules as biomedical agents.

The School of Chemistry is located in state-of-the-art laboratories, with outstanding facilities for research. The School’s reputation as one of Australia’s leading research facilities is confirmed by the consistently high level of funding it receives, most notably from the Australian Research Council. Links with institutes and universities in Europe, Asia and the USA, as well as with industry, also ensure the School’s position at the forefront of international research efforts.

All staff members are recognised, nationally and internationally, as leaders in their fields. Several have been elected Fellows of the Australian Academy of Science. In recent times, staff members have received important awards, such as the Eureka Prize, the Le Fèvre Memorial Prize, the Royal Australian Chemical Institute’s Leighton Memorial Medal, the H. G. Smith Award, and the Organometallic Chemistry Award, as well as the Analytical Division’s Lloyd Smythe Medal.

Postgraduate students in the School of Chemistry benefit from the opportunity for frequent travel to conferences and workshops around Australia as well as internationally. It is worth noting that three recent winners of the Cornforth Medal awarded for the most outstanding Australian PhD thesis in chemistry were postgraduate students at the School of Chemistry: Kris Kilian (2008), Mohammad Choucair (2011) and David Hvasanov (2013).

The School’s graduate programs lead to respected qualifications and provide the opportunity to work and learn alongside researchers and educators of high standing. There are three programs that provide the opportunity to carry out research in the School.

Contacts –
 Administrator
 Ken McGuffin
 T: +61 2 9385 4611
 E: chemistry@unsw.edu.au

Research
 Professor Martina Stenzel
 T: +61 2 9385 4656
 E: m.stenzel@unsw.edu.au

More information
 www.chemistry.unsw.edu.au
 (search “Postgraduate Research”)
Research Degrees

Master of Philosophy
- **Program Code:** 2475 (Chemistry)
- **Length of study:** 1.5 years of advanced study leading to the submission of a thesis. Minimum duration for completion is 1 year.
- **Program Details:** This program is open to all recent BSc Chemistry graduates. Students complete a component of coursework, including research methodology, and a thesis comprising an original piece of research work, of a limited scope but at least 66% of the degree.

Master of Science
- **Program Code:** 2910 (Chemistry)
- **Length of study:** 1.5 to 2 years of advanced study leading to the submission of a thesis. Minimum duration for completion is 1.5 years.
- **Program Details:** This program is open to BSc (Hons) graduates who have attained at least the level of Honours Class II division 2. This program requires the completion of an original piece of research, more limited in scope and nature than the PhD program. Candidates develop mastery of appropriate methodology and learn the fundamentals of research. Findings are presented in a thesis that places the work in the wider context of their discipline.

Doctor of Philosophy
- **Program Code:** 1870 (Chemistry)
- **Length of study:** 3 to 4 years of advanced study leading to the submission of a thesis. Minimum duration for completion is 3 years.
- **Program Details:** This program is open to BSc (Hons) graduates who have attained at least the level of Honours Class II division 1. A PhD requires the completion of a piece of research that demonstrates a significant and original contribution to knowledge in the field of study. Candidates acquire advanced specialist research training under academic supervision. The candidate’s thesis summarises the research and provides evidence for independent thought and critical analysis, effective communication and expert knowledge of the discipline in the international context.